\begin{equation*}
1-\frac{1}{z^2}=0.91
\end{equation*}
\begin{equation*}
1-0.91=\frac{1}{z^2}
\end{equation*}
\begin{equation*}
0.09 = \frac{1}{z^2}
\end{equation*}
\begin{equation*}
0.09z^2 = 1
\end{equation*}
\begin{equation*}
z^2=\frac{1}{0.09}
\end{equation*}
\begin{equation*}
z=\sqrt{\frac{1}{0.09}}
\end{equation*}
So the range of prices including values within \(\sqrt{\frac{1}{0.09}}\) of the mean will include at least \(91\%\) of the homes.
\begin{equation*}
\mu\pm \sqrt{\frac{1}{0.09}}\sigma
\end{equation*}
\begin{equation*}
348,000\pm \sqrt{\frac{1}{0.09}}\cdot 30,000
\end{equation*}
\begin{equation*}
\boxed{\$248,000\text{ to }\$ 448,000}
\end{equation*}