(Donnelly 8.44)
Determine the sample size needed to construct a \(99\%\) confidence interval to estimate the average GPA for the student population at a college with a margin of error equal to \(0.5\text{.}\) Assume the standard deviation of the GPA for the student population is \(2.5\text{.}\)
Answer.
\(ME_{\overline{x}}=0.5\)
\(\sigma=2.5\)
\(1-\alpha=0.99\rightarrow \alpha=0.01\rightarrow \alpha/2=.005\rightarrow z_{.005}=NORM.S.INV(.995)\approx 2.575\)
\begin{equation*}
n\approx \frac{(2.575)^2(2.5)^2}{(0.5)^2}\approx 165.87
\end{equation*}
Using the formula, we’ll get \(n\approx 165.87\text{.}\) We always need to round up to guarantee the desired margin of error. So here, we need a sample size of at least \(\boxed{166}\text{.}\)