population 1: Florida, population 2: US
\begin{equation*}
n_1=180,\; x_1=67,\; p_1=\frac{67}{180}\approx 0.372
\end{equation*}
\begin{equation*}
n_2=190,\; x_2=42,\; p_2=\frac{42}{190}\approx 0.221
\end{equation*}
\begin{equation*}
H_0: p_1-p_2\leq 0.07
\end{equation*}
\begin{equation*}
H_1: p_1-p_2\gt 0.07
\end{equation*}
Critical value:
\(NORM.S.INV(0.95)\approx 1.645\)
\begin{equation*}
\sigma_{p_1-p_2}\approx \sqrt{\frac{0.372(0.628)}{180}+\frac{0.221(0.779)}{190}}\approx 0.0469
\end{equation*}
Test statistic:
\begin{equation*}
z_p\approx \frac{(0.372-0.221)-0.7}{0.0469}\approx 1.73
\end{equation*}
Since the test statistic is bigger than the critical value, and this is a right-tailed test, we reject
\(H_0\text{.}\)
There is enough evidence to conclude that the proportion of underwater mortgages in FL is more than
\(7\%\) higher than nationwide.