Skip to main content\(\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 11.1 The Chi-square Distribution
Figure 11.1.1.
Investigation 11.1.1.
(a)
The \(\chi^2\) distribution curves are not symmetric, but instead are .....
positively skewed
-
negatively skewed
-
(b)
As the degrees of freedom increases, the skewness .....
decreases
-
increases
-
stays the same
-
(c)
The area under the curve is equal to .....
(d)
All
\(\chi^2\) values are greater than or equal to .....
We can use Table 8 in Appendix A of your book to find critical \(\chi^2\) values. The notation for these is \(\chi^2_{\alpha,df}\text{.}\)
-
Find the desired significance level,
\(\alpha\text{,}\) across the
top of the table.
-
Locate
\(df\) along the
left of the table.
We can also find critical \(\chi^2\)-values using the Excel command
\begin{equation*}
CHISQ.INV.RT
\end{equation*}
Exercise 11.1.2.
Find the following critical
\(\chi^2\)-values:
(a)
(b)
(c)
(d)